[POJ 1077] Eight【双向BFS】
Problem:
Time Limit: 1000MS | Memory Limit: 65536K | Special Judge |
Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3 x 4 6 7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
Source
Solution:
本来是 BFS 大水题,练了一下双向 BFS,处理输出时似乎复杂不少。
采用双向 BFS + 康托展开哈希。
注意事项:
- #define 宏函数时一定要注意多打括号,避免运算时因优先级出错。
- 双向 BFS 处理相遇时由于要输出路径,必须分两类讨论。
康托展开(Cantor Expansion):
- 将序列 {a1, a2, ..., an} 展开为正整数 X, 表示该序列为全排列中的第 X 项。
- 设 ri 表示 ai+1 ~ an 中比 ai 小的个数,则
- X = r1·(n - 1)! + r2·(n - 2)! + ... + ri·(n - i)! + ... + rn·0!
Code: O(n·n!), n为总格数 [3660K, 32MS]
#include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> using namespace std; const int fac[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320}; const int dx[4] = {0, 0,-1, 1}; const int dy[4] = {1,-1, 0, 0}; inline void getTile(int &t){ char ch = getchar(); while(ch < '0') ch = getchar(); t = (ch == 'x') ? 0 : ch - '0'; } struct Puzzle{ int con[3][3]; inline int getCantor(){ // Cantor Expansion Hash int cantor = 0; for(register int i = 0; i < 9; i++){ int cnt = 0; for(register int j = i + 1; j < 9; j++) if(con[i / 3][i % 3] > con[j / 3][j % 3]) cnt++; cantor += cnt * fac[8 - i]; } return cantor; } } s, t; struct Queue{ #define MAXNODE 362885 Puzzle node[MAXNODE]; int fr, re; inline void clear() {fr = re = 0;} inline bool empty() {return fr == re;} inline void push(const Puzzle &x) {node[re++] = x;} inline void pop() {if(!empty()) fr++;} inline Puzzle front() {return node[fr];} } q; int prev[MAXNODE], dir[MAXNODE]; // Positions of the queue serve as subscriptions int vis[MAXNODE], qpos[MAXNODE]; // Cantor values serve as subscriptions #define showDir(d) putchar((d) == 0 ? 'r' : ((d) == 1 ? 'l' : ((d) == 2 ? 'u' : 'd'))) // Beware of the priority of ^(XOR) used below, remember to add a bracket around each "d" !!! inline void displayFormer(int pos){ if(dir[pos] == -1) return; displayFormer(prev[pos]); showDir(dir[pos]); } inline void bidirectional_BFS(){ q.clear(); int sCantor = s.getCantor(), tCantor = t.getCantor(); prev[0] = dir[0] = -1, vis[sCantor] = 1, qpos[sCantor] = 0, q.push(s); prev[1] = dir[1] = -1, vis[tCantor] = 2, qpos[tCantor] = 1, q.push(t); while(!q.empty()){ Puzzle u = q.front(); int uCantor = u.getCantor(), Bx, By; for(register int i = 0; i < 9; i++) if(!u.con[i / 3][i % 3]){ Bx = i / 3, By = i % 3; break; } for(register int i = 0; i < 4; i++){ int Nx = Bx + dx[i], Ny = By + dy[i]; if(Nx < 0 || Nx >= 3 || Ny < 0 || Ny >= 3) continue; Puzzle v = u; swap(v.con[Bx][By], v.con[Nx][Ny]); // Construct the new state int vCantor = v.getCantor(); if(!vis[vCantor]){ prev[q.re] = q.fr, dir[q.re] = (vis[uCantor] == 1 ? i : i ^ 1); vis[vCantor] = vis[uCantor], qpos[vCantor] = q.re; q.push(v); } // Push the new-reached state at the rear of queue if(vis[vCantor] != vis[uCantor]){ // Beware of the putting-together of 3 parts of the answer !!! if(vis[uCantor] == 1){ // When a state "u" transfered from origin meets with another state "v" already transfered from destination displayFormer(q.fr); // Part 1: origin - u showDir(i); // Part2: u - v for(register int curPos = qpos[vCantor]; dir[curPos] != -1; curPos = prev[curPos]) showDir(dir[curPos]); // Part 3: v - destination } else{ // When a state "u" transfered from destination meets with another state "v" already transfered from origin // All directions reverse displayFormer(qpos[vCantor]); // Part 1: origin - v showDir(i ^ 1); // Part 2: v - u for(register int curPos = q.fr; dir[curPos] != -1; curPos = prev[curPos]) showDir(dir[curPos]); // Part 3: u - destination } puts(""); return; } } q.pop(); } puts("unsolvable"); } int main(){ for(register int i = 0; i < 9; i++) getTile(s.con[i / 3][i % 3]); for(register int i = 0; i < 8; i++) t.con[i / 3][i % 3] = i + 1; t.con[2][2] = 0; bidirectional_BFS(); return 0; }
发表评论